$\vec{T}(t)$ | 平移矩阵 | Affine | $\begin{pmatrix} I^3 & \vec{t} \\ 0^t & 1 \end{pmatrix}$ |
$\vec{R_x}(\rho)$ | 旋转矩阵 | 线x轴旋转$\rho$弧度。Orthogonal & Affine | $\vec{R}_x(\phi) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & cos\phi & -sin\phi & 0 \\ 0 & sin\phi & cos\phi & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ $\vec{R}_y(\phi) = \begin{pmatrix} cos\phi & 0 & sin\phi & 0 \\ 0 & 1 & 0 & 0 \\ -sin\phi & 0 & cos\phi & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ $\vec{R}_z(\phi) = \begin{pmatrix} cos\phi & -sin\phi & 0 & 0 \\ sin\phi & cos\phi & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ |
$\vec{R}$ | 旋转矩阵 | Orthogonal & Affine | |
$\vec{S}(s)$ | 缩放矩阵 | x, y, z同时均匀缩放s。Affine | $\vec{S}(\vec{s}) = \begin{pmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1\end{pmatrix}$ |
$\vec{H}_{ij}(s)$ | 错切矩阵(shear matrix) | 使用系统s来相对于分量j错切(推移)分量i,$i,j \in { x, y, x}$ | $\vec{H}_{xz}(s) = \begin{pmatrix} 1 & 0 & s & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ |
$\vec{E}(h,p,r)$ | 欧拉变换(Euler Transform) | yaw, pitch, roll Orthogonal & affine | |
$\vec{P}_o(s)$ | 正交投影(orthogonal projection) | Affine | |
$\vec{P}_p(s)$ | 透视投影(perspection projection) | .. | |
$slerp(\hat{q}, \hat{r}, t) $ | 线性插值变换(slerp transform) | 对四元数$\hat(q), \hat(r)$用参数t插值得到的新四元数 | |